Büyük lisan modelleri ile gelen beş değerli risk
Yapay zekayı kullananlar dikkat
Yapay zeka ve onun sağladığı imkanları herkes konuşuyor. Birinci günlerde duyulan heyecan yerini yavaş yavaş risklerin ve gerçekliğinin sorgulanmasına bırakmaya başladı. Siber güvenlik şirketi ESET yapay zeka araçlarını destekleyen büyük lisan modellerini (LLM) incelemeye aldı.
İş dünyası ve BT başkanları, bir yandan teknolojinin müşteri hizmetleri ve yazılım geliştirme üzere alanlarda yaratacağı risk potansiyelini düşünüyor, öbür yandan da yeni gelişmelerin muhtemel dezavantajları ve dikkat edilmesi gereken risklerin de giderek daha fazla farkına varıyorlar. Kuruluşların büyük lisan modellerinin (LLM) potansiyelinden yararlanabilmeleri için, teknolojinin yapılan işe ziyan verebilecek kapalı risklerini de hesaplamaları gerekiyor.
Büyük lisan modelleri nasıl çalışıyor?
ChatGPT ve öteki üretken yapay zeka araçları, LLM’ler tarafından desteklenmektedir. Muazzam ölçüde metin verisini işlemek için yapay hudut ağlarını kullanarak çalışırlar. Sözler ortasındaki kalıpları ve bunların içeriğe nazaran nasıl kullanıldığını öğrendikten sonra model, kullanıcılarla doğal lisanda etkileşime girebiliyor. ChatGPT’nin göze çarpan muvaffakiyetinin ana nedenlerinden biri latife yapma, şiir yazma ve genel olarak gerçek bir beşerden ayırt edilmesi güç bir biçimde irtibat kurma yeteneğidir. ChatGPT üzere sohbet robotlarında kullanılan LLM dayanaklı üretken yapay zeka modelleri, muhteşem güçlü arama motorları üzere çalışıyor ve soruları yanıtlamak ve vazifeleri insan gibisi bir lisanla yerine getirmek için öğrendikleri dataları kullanıyor. İster kamuya açık modeller ister bir kuruluş içinde dahili olarak kullanılan tescilli modeller olsun, LLM tabanlı üretken yapay zeka, şirketleri belli güvenlik ve zımnilik risklerine maruz bırakabilir.
Beş kıymetli büyük lisan modeli riski
Hassas dataların fazla paylaşımı LLM tabanlı sohbet robotları sır saklama ya da unutma konusunda pek güzel değil. Bu, yazdığınız rastgele bir bilginin model tarafından benimsenebileceği ve diğerlerinin kullanımına sunulabileceği yahut en azından gelecekteki LLM modellerini eğitmek için kullanılabileceği manasına gelir.
Telif hakkı zorlukları LLM’lere büyük ölçüde data öğretilir. Fakat bu bilgiler çoklukla içerik sahibinin açık müsaadesi olmadan web’den alınır. Kullanmaya devam ettiğinizde potansiyel telif hakkı sıkıntıları oluşabilir.
Güvensiz kod Geliştiriciler, pazara çıkış müddetlerini hızlandırmalarına yardımcı olması hedefiyle giderek daha fazla ChatGPT ve gibisi araçlara yöneliyor. Teorik olarak kod parçacıkları ve hatta tüm yazılım programlarını süratli ve verimli bir formda oluşturarak bu yardımı sağlayabilir. Fakat güvenlik uzmanları bunun birebir vakitte güvenlik açıkları da oluşturabileceği konusunda uyarıyor.
LLM’nin kendisini hackleme LLM’lere yetkisiz erişim ve bunlar üzerinde değişiklik yapmak, bilgisayar korsanlarına, modelin süratli enjeksiyon atakları yoluyla hassas bilgileri ifşa etmesini sağlamak yahut engellenmesi gereken öteki aksiyonları gerçekleştirmek üzere makûs niyetli faaliyetler gerçekleştirmeleri için bir dizi seçenek sunabilir.
Yapay zeka sağlayıcısında data ihlali Yapay zeka modelleri geliştiren bir şirketin kendi datalarının de ihlal edilmesi, örneğin bilgisayar korsanlarının hassas özel bilgiler içerebilecek eğitim bilgilerini çalması ihtimali her vakit vardır. Tıpkı durum data sızıntıları için de geçerlidir.
Riskleri azaltmak için yapılması gerekenler:
Kaynak: (BYZHA) Beyaz Haber Ajansı
SAĞLIK
21 Kasım 2024SAĞLIK
21 Kasım 2024EĞİTİM
21 Kasım 2024TEKNOLOJİ
21 Kasım 2024EKONOMİ
21 Kasım 2024Veri politikasındaki amaçlarla sınırlı ve mevzuata uygun şekilde çerez konumlandırmaktayız. Detaylar için veri politikamızı inceleyebilirsiniz.